
J .  Fluid Mech. (1992), vol. 234, p p .  27S296 
Printed in Great Britain 

279 

The production of constant-shear flow 
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An effective and practical method of producing strong constant-shear flow with a low 
turbulence level in the laboratory has been developed. A pair of closely spaced 
shaped gauzes with the upstream gauze of non-uniform porosity and the downstream 
gauze of uniform porosity was used for the generation of the flow. The method 
presented can be generalized to specify the gauze shape and porosity distribution 
necessary to generate other velocity distributions desired in a duct flow. 

1. Introduction 
The simplest form of shear flow is constant-shear flow - a shear flow with a linear 

velocity distribution. This type of flow is best known as plane Couette flow. There is 
considerable interest in the generation of this type of flow for experimental purposes. 
The common practice for generating a constant-shear flow in the laboratory is by 
placing a shear-generating apparatus such as a tapered honeycomb (Kotansky 1966 ; 
Kiya, Tamura & Arie 1980), or a grid of parallel rods (Owen & Zienkiewicz 1957; 
Livesey & Turner 1964), or a curved gauge (Maul1 & Young 1973; Stansby 1976) in 
the flow. Upstream of the shear generator, the flow is generally uniform ; downstream 
at the test section, the flow is sheared. 

Once a constant-shear flow is generated, in addition to the viscous effects 
encroaching into the flow from the wall boundary layers, the relevant factors which 
affect the steadiness and decay of a velocity profile include local abrupt mean 
velocity changes and diffusion of momentum by turbulent mixing. Thus, for the 
practical requirement of having a persistent velocity profile,it is desirable to have a 
velocity distribution which is as linear as can possibly be achieved and also with a 
low level of turbulence intensity. 

The honeycomb method presented by Kotansky (1966) can generate shear flows 
with quite smooth velocity variations and a low turbulence level. The disadvantage 
of this method is the significant technical difficulty involved in shaping the 
honeycomb block to a predetermined shape and making any corrections necessary to 
produce the desired velocity profile. The shear parameter h is defined as 

U/U,-  1 = h(y /L-0 .5) .  (1 .1)  
Here, L (see figure 1) is the height of the shear flow, Uis the velocity in the 2-direction 
and the subscript m designates the value at mid-height of the flow. The shear 
parameters are 0.42 and 0.74 in the work of Kotansky (1966) and Kiya et al. (1980), 
respectively. 

A representative work using a grid of parallel rods is that by Owen & Zienkiewicz 
(1957). Although their method is strictly applicable only to weakly sheared flows, 
close agreement with their theory was reported for a grid designed for a shear 
parameter of 0.43. By applying the method of Owen & Zienkiewicz, with some 
empirical corrections, Livesey & Turner (1964) produced two symmetrical shear 
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FIGURE 1. Definition diagram for two-dimensional flow through a gauze. 

velocity profiles with shear parameters of 0.6 and 0.8. Technically, this method 
involving a grid of parallel rods is not too difficult to use. Through some empirical 
corrections, it could be used to  generate quite strong shear flows. The disadvantage 
of this method is high turbulence intensities (Davies 1976). 

The most generalized work on the subject of the production of a specific velocity 
distribution through the use of a spatial distribution of obstructions is perhaps the 
theory presented by Elder (1959). However, the practicality of obtaining analytical 
results by his method is limited owing to the mathematical complexity involved in 
solving the linearized equations. This obstacle was removed by Turner (1969) by 
means of a computational scheme which used relatively simple iterative techniques. 
The generation of a constant-shear flow with h = 0.35 was among the problems 
analysed by Turner. By using a gauze with uniform porosity shaped according to  the 
computed solutions, the results were found to be in satisfactory agreement. Maull 
(1968) modified the theoretical work of Elder and generated (also by means of a 
curved gauze with uniform porosity) a constant-shear flow with h =0.4 and 
turbulence intensities around 0.5 %. This device of Maull was later used by Maull & 
Young (1973), Mair & Stansby (1975) and Stansby (1976) for their studies. 

The study presented herein was undertaken to  develop an effective and practical 
method for the production of constant-shear flows. The emphasis is on linearity of 
the velocity distribution and low turbulence level, which are necessary for many 
laboratory investigations. The analysis and considerations involved in the manu- 
facture of shear-flow generators, in certain respects, represent extensions of the work 
of Vahl Davis (1957), Elder (1959) and Turner (1969). An insightful overview 
regarding flow through screens has been given by Laws & Livesey (1978). 

Constant-shear flow properties for various gauze configurations are presented in 
the following order : (i) single gauze, uniform porosity ; (ii) single gauze, non-uniform 
porosity; (iii) pair of gauzes, both uniform porosity; and (iv) pair of gauzes, non- 
uniform followed by uniform porosity. 

2. Gauze parameters and boundary conditions 
Initially, it  is useful to restate some of the main steps of the analytical work of 

Vahl Davis (1957) and Elder (1959). A gauze of arbitrary shape, described by 
x =f(y),  is situated in a two-dimensional channel of height L (figure 1 ) .  The gauze is 
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regarded as a surface of discontinuity in velocity, pressure, and vorticity. The effect 
of viscosity is neglected except in the immediate vicinity of the gauze. Further, the 
flow is considered to be incompressible. 

2.1. Gauze parameters 
When flow passes through a gauze, there are instantaneous changes in static 
pressure, which are given by the pressure drop (or resistance) coefficient K, and 
changes in tangential velocity, which are given by the deflection (or lift) coefficient 
B. These two parameters are necessary to predict the aerodynamic characteristic of 
a gauze. The pressure drop coefficient K is defined by 

K = Ap/(O.5pu2,), (2.1) 
where Ap is the static pressure drop across the gauze, p is the fluid density, and U, is 
the local velocity component normal to the gauze surface. The deflection coefficient 
B is defined by 

where V ,  is the tangential velocity. The subscripts 1 and 2 represent upstream and 
downstream conditions, respectively (figure 1). Thus, B is a measure of the amount 
by which a gauze refracts a streamline which is at  a given incident angle to it. 

The gauze characteristics K and B are assumed to be independent of the Reynolds 
number and dependent only on the physical properties of the gauze. For a square- 
mesh wire gauze, Elder (1959) assumed that 

K = [(1-8)//312, (2.3) 

B =  l-( l+Ki)-i .  (2.4) 

where /I is the fractional open area of the gauze, and that B is related to K by 

2.2. The linearized boundary conditions at the gauze 
The effective loss coefficient y ,  as given by Vahl Davis (1957), is 

y = K c0s28. (2.5) 
It is a function of K and the angle 8 between the normal to the gauze and the 
unperturbed flow direction (figure 1). If the variations of 8 and resistance y across the 
gauze are both small, then we can write 

Y = YOP + W l ,  (2.6) 
where yo is the mean effective loss coefficient which is a constant determined by both 
the shape and physical properties of the gauze. Note that s(y) is a function of both 
K and 8. 

The equations relating the velocity changes to the gauze properties, as given by 
Vahl Davis (1957) and Elder (1959), are 

and 

where 

T = tan8, 
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Here, v (equal to Urn in the present study) is a suitable mean velocity for non- 
dimensionalizing the equations and q is the local flow velocity at the gauze surface. 
The mean velocity in the y-direction is designated by V.  The suffix m represents a 
value distant from the plane of the gauze. 

3. A single gauze in a two-dimensional channel 
3.1. Governing equations 

If the gauze produces a perturbation to the undisturbed stream function $m such 
that 9 = 9,  + +V, provided that the perturbation is small (note that this assumption 
is not necessary in the case of constant-shear flows), then 

V2ly = 0. (3 .1)  
A finite solution of (3 .1) ,  which satisfies the boundary conditions at  the walls and the 
gauze (32.2) and the assumption that the gauze is everywhere nearly coincident with 
the plane x = 0 as given by Elder (1959), is 

W 

u*- 1 = A(u- 1)-0.5( 1 -A) s+E a, cosnw, (3 .2)  
fl-1 

where 

Equation (3 .2)  is a result relating the upstream and the downstream velocity 
distributions, the aerodynamic coefficients, and the geometrical shape of the gauze. 

By using a transformation technique discussed by Hardy & Rogosinski (1944), 
here designated as H and H*, to overcome the difficulty of evaluating a,, Elder 
(1959) was able to write (3 .2)  as 

( ~ * - l ) - A ( ~ - l ) + 0 . 5 ( l - A ) ~  = EH[BT],  ( 3 . 3 ~ )  

or as B T  = H*[(u*-u) /E  + (2  -B)  ( U -  1) +0.5(2 -B)  s ] .  (3 .3b)  

The mathematical difficulty of obtaining analytical solutions to (3 .3)  even for some 
carefully chosen problems are tremendous. Turner (1969) took a numerical approach 
by presenting a computational scheme to solve this equation. 

3.2. Generation of constant-shear flow with a curved gauze of uniform porosity 
Figure 2 shows some computed gauze shapes following the iterative procedures of 
Turner (1969). The calculations were based on the physical properties of a selected 
fabric mesh gauze which was used in the manufacture of shear-flow generators. The 
square-mesh gauze has a density of 30 mesh/cm. Each strand is about 0.15 mm in 
diameter. Thus, it  has a porosity p of 0.32 and resistance coefficient K of 4.52. 

Throughout the course of this study, more than a dozen shear-flow generators were 
manufactured with four basic gauze shapes, which were calculated to have shear flow 
parameters A* = 0.4, 0.6, 0.8, and 0.95 as shown in figure 2.  They were installed in 
an open-return-type wind tunnel which had a 61 cm square cross-section. The gauzes 
were placed at the entrance of the wind tunnel immediately following a fine 
honeycomb block of 5cm thickness used to secure a uniform, low-turbulence 
approach flow. The gauze was glued to Plexiglas frames which were then bolted to 
the sidewalls. Tension on the gauze was applied mainly in the lateral direction. 
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FIGURE 2. The gauze shape required to produce a constant-shear flow. /? = 0.32, K = 4.52. 

Measurements of the vertical velocity distribution were made at x/L 2 1.7, where 
the shear flows were fully developed. Some of these results are shown in figure 3. The 
velocity profiles are all quite smooth. The local turbulence intensity (r.m.8. of the 
fluctuation velocity/the local mean velocity) is approximately 0.3 YO, except in the 
wall boundary-layer regions where it is higher. Experimental values of the shear 
parameter match those of theoretical predictions very well up to A* = 0.6 as shown 
in figure 4;  the bars represent the range of scatter of the data. For the A* = 0.6 gauze, 
spanwise along the gauze, emax = 38.71". This result for curved gauzes is in close 
agreement with the results for linear gauzes of Vahl Davis (1957) and Elder (1959). 
Thus, this small-perturbation solution, specifically in terms of refraction of the 
streamline by a gauze, applies for 6 up to 40". As the shear parameter increases 
beyond 0.6, the discrepancy between theoretical predictions and experimental 
results increases. A departure of the velocity distribution from linearity in the upper 
and lower regions where B t a n e  varies rapidly is also seen. These are the regions 
where Maul1 (1968) found it necessary to modify the gauze shape in an empirical 
fashion in order to generate a flow suitable for his studies. 

3.3. Generation of constant-shear flow with a curved gauze of non-uniform porosity 
In  the preceding section, the calculation of the gauze shape required to generate a 
designated constant-shear flow was based on the assumption that the physical 
properties of the gauze are uniform. Therefore, spanwise variation of the amount by 
which the gauze refracts the streamline is dependent only on the change of the gauze 
shape; i.e. on e(w) .  In this section, additional flow control is introduced by suitable 
variation of the gauze porosity ) (w) ,  and thus K(w),  B(w), and y(w). 

A solution to the problem of producing a constant-shear flow with a gauze of non- 
uniform porosity can be obtained in two steps. The first is to obtain the gauze shape 

10 FLM 234 
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FIGURE 3. The velocity profile downstream of a curved gauze of uniform porosity. 

required to produce a shear flow with shear parameter A* with the assumption of 
uniform porosity as has been discussed in $3.2. The second step is to increase the 
shear parameter by an amount AA to a new level by varying the porosity across the 
gauze. Physically, this can be achieved in the laboratory by spraying an acrylic resin 
onto the gauze. The required distribution of K for the gauze can be calculated from 
(3.3) by a numerical iterative procedure similar to that introduced by Turner (1969) 
for the gauze shape. An additional boundary condition, K 2 Kplaingauze, was imposed 
in the calculations. It should be emphasized that during the calculations in step 2 the 
shape of the gauze O(w)  is determined from the calculation in the first step. The 
t,heoretical distributions of K that are required for the A* = 0.4 and the A* = 0.6 
gauzes (figure 2) to increase the shear parameter to 0.6 and 0.8, and 0.8 and 1.0, 
respectively, are shown in figures 5 ( a )  and 5 ( b ) .  

With the gauzes installed in a wind tunnel, direct measurement of the resistance 
coefficient variation is impractical, especially in the double-gauze situation which 
will be discussed in $4.3. Therefore, the necessary adjustments of porosity 
distribution for both the single- and double-gauze cases were carried out by direct 
measurement of the velocity profile downstream using the theoretical predictions as 
a guide. The extent of streamline displacement a t  a particular location along the 
gauze was obtained by visualization with smoke tracer. Measurements of the 
resistance coefficient were performed after dismantling the gauze from the supporting 
frames. Any designated position on the gauze was then inserted in the middle of a 
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FIGURE 4. A comparison of the theoretical and experimental shear parameters for a single 
gauze of uniform porosity. 
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FIGURE 5. The resistance coefficient adjustments required for a single gauze. (a) Gauze with 
A* = 0.4 : ---, theoretical prediction ; measured value : -0-, increase h to 0.6; -0-, increase 
A to 0.8. (b) Gauze with A* = 0.6 : ---, theoretical prediction ; measured value : -0-, increase 
A to 0.8; -0-, increase A to 1.0. 

10-2 



286 H .  G .  C. Woo and J .  E .  Cermak 

Turbulence, u'/U (YO) 
0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

I I I I 1 I I 

0 A 

0 A i l  

0 A 

/ 

A 

o h  

A 

0.4 A 

A 

A 
I - 

0 - 0.2 
0 

0 

- 

1 .o 

A 

A 

A 

A 

1 I 1 I I I 1 
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

u* - 1 

FIQURE 6. The velocity and turbulence intensity profiles downstream of a curved gauze of non- 
uniform porosity. A* = 0.4 : 0,  mean velocity ; , turbulence intensity. A* = 0.6 : A, mean 
velocity ; A, turbulence intensity. 

pipe flow with 1.27 cm in diameter and Ap was measured. U, was set a t  3 m/s a t  
which the Reynolds-number effect on K disappears. The experimental results are 
compared with the theoretical predictions in figure 5 (a, b ) .  Close agreement is found 
in the cases of the A* = 0.4 gauze with an increase in the shear parameter to 0.6, and 
the A* = 0.6 gauze with an increase to 0.8. For the cases of the A* = 0.4 gauze with 
art increase in the shear parameter to 0.8 and the A* = 0.6 gauze with an increase to 
1 .O, the experimental results generally follow the trends of theoretical prediction and 
the comparisons are favourable. 
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The flow downstream of the gauze was found to be very sensitive to treatment of 
the gauze. Therefore, spraying to change the porosity of a gauze must be carried out 
in a careful manner. Any local abrupt variation of the spray (the porosity) can 
generate large-scale eddies and result in abrupt mean velocity changes as well as a 
high turbulence level as shown in the case of the A* = 0.6 gauze increasing the shear 
parameter to 1.0 (figure 6). Unfortunately, technically it is rather difficult to change 
the gauze porosity uniformly in the lateral direction and smoothly varying in the 
vertical direction. Attempts to overcome this shortcoming led to the concept of 
placing a second gauze of the same shape but with uniform porosity immediately 
after the first gauze. Any local non-smooth effect and high turbulence intensity 
caused by the first gauze should be quite effectively attenuated by the second gauze 
if the second gauze is fine and uniform. Meanwhile, the second and third terms on the 
right-hand side of (3.2) for the second gauze should have the overall effect of 
increasing the shear strength of the flow generated. 

4. Two gauzes placed in series 
4.1. Governing equations 

Consider two gauzes placed in series, gauze A is located at x = 0 and gauze B at 
x = xo; denote the region upstream of A as region 1 ,  downstream of B m region 3, 
and in between A and B as region 2. The general solution of the perturbation stream 
functions has the form 

By definition of the problem, f approaches 0 as x approaches f 00. Therefore, we 
have in region 1 : 

region 2 

and region 3:  

(4.3) 

(4.4) 

Let 6, = nxx,,/L, uml = u and urns = u*. The linearized boundary conditions at the 
gauzes (92.2) then yield the following relationships : 
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where (1-BA)Pin-Pzn-Qzn = G n ,  ( 1 + Y A ) P i n - P z n + Q p n  = H n ,  

(i-BB)(P2ne5n+&2ne-~n)-Q3ne-~n = M , ,  
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(1-yB)Q3,e&+P 2n eEn-Q2ne-5n = L,. 

Assume that the approaching flow is uniform, i.e. u-1 = 0, express the 
downstream velocity field in terms of a trigonometric series, 

00 

u* - 1 = C F, cos nw, 
n=l  

and define 7, = coth En and c,, = cosh En, then it can be shown that 

(4.9) 

4.2. The effect of spacing between two gauzes on the downstream velocity 
For a gauze of uniform porosity, if the restrictions inherent in the linearized theory 
are properly observed, it can be shown that the computed gauze shape is practically 
unchanged if the resistance variation term s(w)  is neglected (see also Turner 1969). 
Thersfore, with uniform approach flow, for a pair of identical gauzes of uniform 
porosity, we have: Gn = M,, H ,  = 0, and (4.8) becomes 

00 

yB(u*- 1 )  = C L,  cosnw. 
n-1 

(4.10) 

Equation (4.9) and the related coefficients can also be simplified accordingly. 
With the gauze parameters yo and T ( w )  obtained from the numerical scheme of 

Turner (1969), the downstream velocity distribution u*- 1 as a function of the 
distance xo/L between gauzes can be calculated from a simplified form of (4.9). To 
check the theoretical predictions, a series of experiments were performed with two 
separate pairs of gauzes that have shapes like those of A* = 0.4 and 0.6 in figure 2 at 
various distances apart. These results are shown in figure 7 (a,  b ) .  Comparisons of the 
theoretical predictions and test results generally show that better agreement is 
obtained in the upper part of the flow than the lower part, and the A* = 0.4 gauze 
is better than A* = 0.6. That both the theoretical predictions and experimental 
results for the velocity profile (compare with figure 3) are not linear is quite obvious. 

Owing to  mutual interference, a pair of gauzes that individually can produce (at 
least theoretically) a constant-shear flow may no longer be able to do so when they 
are placed together in series. Namely, the shape required for a pair of identical gauzes 
to generate a particular constant-shear flow may differ from the shape required for 
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FIQURE 7. The velocity profile downstream of a pair of curved gauzes of uniform porosity at 
various distances apart. (a) A* = 0.4; ( b )  A* = 0.6. ---, Theoretical result; 0,  measured value. 

a single gauze. As the separation of the pair, xo/L, approaches zero, it  can be shown 
that (4.9) reduces to (3.2) with E = Zy(2-B)/(2+2y-2B+B2).  This is an asymptotic 
case where theoretically the resulting flow downstream is linear. As xo/L approaches 
infinity, the result given by (4.9) is the same as by using (3.2) twice or by using (3.2) 
with E = ( 4 y - - B ~ + B y ~ ) / ( 2 + y - B ) ~ .  this is another asymptotic case where the 
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FIQURE 8. The required adjustments of gauze shape for a pair of identical gauzes to produce a 
constant-shear flow. -.-.-, double gauzes separated by x,/L = 0.042 to produce a shear flow with 
A = 0.8; -. .-. .-, double gauzes separated by x,lL = 0.083 to produce a shear flow with A = 0.8; 

, A* = 0.4. _ _ _  

resulting flow downstream is also linear. In between these two cases, 0 < x,/L < m, 
the nonlinear effect varies. This effect can be seen in figure 7 (a, b) .  In principle, based 
on (4.9), one could calculate the required adjustments of gauze shape in order to 
produce a shear flow with a linear velocity distribution downstream, as given in two 
examples shown in figure 8. This approach has not been adopted in this study 
because of the obvious reason that adjustment of the gauze shape, especially minor 
corrections, is far more difficult and cumbersome than adjustment of the gauze 
porosity. 

One of the difficulties experienced in the wind-tunnel experiments is to impose 
proper tension, mainly laterally and slightly vertically on the gauze. Note that the 
tension imposed on the gauze needs to balance that developed by wind pressure on 
it under test conditions in order to maintain its designed section shape. Any variation 
or discrepancy after each installation or adjustment of the gauze can cause changes 
in the gauze shape and result in test errors. Despite these experimental difficulties 
and with some approximation to the A-value for the velocity profile, figure 9 shows 
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FIGURE 9. A comparison of the shear parameter for a pair of curved gauzes of uniform porosity at 
various distances apart. ---, Theoretical prediction. Measured value: 0, gauze with A* = 0.4; +, 
gauze with A* = 0.6. 

that the shear parameters obtained from the measurements generally follow the 
trends predicted by the theory but the values are consistently lower. The contribution 
of the upstream gauze in increasing the shear-flow strength diminishes rather quickly 
as the distance between the gauzes increases and practically disappears at 7cxo/L = 
2.2 for the A* = 0.4 gauzes and 2.6 for the A* = 0.6 gauzes. Beyond these distances, 
the upstream gauzes have negative contribution. In fact, if x,/L is large enough, it 
can be assumed that the gauzes do not interfere with each other. Under this 
circumstance, (3.2) can be applied separately for the upstream and downstream 
gauzes. The factor A in (3.2) represents the manner in which a gauze attenuates the 
velocity unevenness. Depending on the value being positive or negative, the sense of 
reduction in the velocity variation may be reversed. In the two cases shown in figure 
9, A has negative values. Therefore, if the upstream gauze is replaced with a gauze 
that generates weaker shear flow or even shear flow with negative shear parameter, 
it would result in a stronger shear flow generated downstream. Under certain 
conditions A can be positive. In  this case, as xo/L increases, the shear strength 
decreases, but there will be no crossover point and the upstream gauze will always 
have a positive contribution. The wind tunnel used in this study has very limited test 
length ; therefore, measurements could not be carried out beyond the crossover 
points. The resulting calculated shear strength as shown in figure 9 reaches the 
asymptotic values of 0.36 and 0.56, respectively. 

4.3. Generation of constant-shear flow with a pair of curved gauzes with identical 
shape, with the upstream one of non-uniform porosity and the downstream one of 

uniform porosity 
With a second gauze of uniform porosity and the same shape placed immediately 
downstream of the first gauze, the required adjustments in porosity distribution for 
the first gauze in order to generate a shear flow with the same shear strength or 
increase the shear strength to a new value, can be calculated from a simplified form 



292 H .  G. C .  Woo and J .  E .  Cermak 

" 
3 4 5 6 1 8 9  

K 
3 4 5 6 1 8 9  

K 

FIGURE 10. The resistance coefficient adjustments required for the upstream gauze in a double- 
curved-gauze situation. (a)  A pair of A* = 0.4 gauzes : _--, theoretical prediction; measured value : 
-0-, at x,/L = 0.042 to increase h to 0.8. ( b )  A pair of A* = 0.6 gauzes: ---, theoretical prediction ; 
measured value: -0-, at xo/L = 0.042 to increase h to 1.2. 

of (4.9). Note that with the upstream gauze of varying porosity and the downstream 
gauze of uniform porosity, (4.6) becomes 

a, 

0.57, sA = H ,  cos nw, 
n-1 

(4.11) 

and (4.8) reduces to (4.10). Note also that since B, =t= B,, G, + M , .  An iterative 
technique using the quasi-Newtonian method for nonlinear optimization (Dennis & 
Schnabel 1983) was applied in the calculations. Again the physical restriction that 
K 2 Kplaingauze was imposed. 

Figure 10(a, b )  shows examples of how the required distributions of K for the 
upstream gauze vary with the distance between the gauzes. One general conclusion 
based on these theoretical predictions is that the second gauze should be placed as 
close as possible to the first one. This is because the adjustments of the resistance 
coeficient needed for the first gauze increase rather quickly as xO/L increases. By 
placing two gauzes closer together, changes of porosity of the first gauze become 
more effective. However, one has to be aware that in practice two gauzes must not 
be placed too close together, since then the effective porosity of the two gauzes 
becomes non-uniform because of non-uniform matching of wire locations in the two 
gauzes : some wires overlap, some overlap partially, some not at all. This results in 
complex interference fringe patterns over the gauzes that cause perturbations in the 
velocity distribution downstream. 
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FIQURE 11. The resistance coefficient adjustments required for the upstream gauze in a double- 
curved-gauze situation. ---, Theoretical prediction for a pair of A* = 0.6 gauzes at xo/L = 0.083 
to adjust A into 1.0; Measured value. -0-, a pair of A* = 0.6 gauzes at x,/L = 0.083 to adjust A 
to 1.0; -I--, a pair of A* = 0.95 gauzes at xo/L = 0.042 to adjust h to 1.5. 

By comparing figure 10(a, b) to figure 5(a ,  b), the effect of mutual interference 
between a pair of gauzes on the distribution of the resistance coefficient becomes 
obvious. As the distance between the gauzes diminishes, say x,/L < 0.042 for the 
cases investigated, a pair of gauzes theoretically behaves more like a single gauze. 
This is reflected in the calculated results that the velocity profiles generated become 
more linear and the required variations of K become similar in shape to those for a 
single gauze shown in figure 5.  This is more obvious for the A* = 0.4 gauzes in which 
the small streamline displacement assumption is more valid than for the A* = 0.6 
gauzes. 

Experimental results on resistance coefficient distributions for a pair of A* = 0.4 
gauzes separated by x,/L = 0.042 to increase the shear parameter to 0.8 and a pair 
of A* = 0.6 gauzes which were also separated by xo/L = 0.042 to increase the shear 
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FIQURE 12. The velocity and turbulence intensity profiles downstream of a pair of curved gauzes 
that have A* = 0.95 at x,/L = 0.042. Measured value : 0 ,  mean velocity with the upstream gauze 
of uniform porosity; 0,  mean velocity, and 0 ,  turbulence intensity with the upstream gauze of 
non-uniform porosity. 

parameter to 1.2 are shown together with the theoretical predictions in figures 10 (a) 
and 10 (b), respectively. Quantitative agreement between the theoretical predictions 
and experimental results is rather poor. This result was expected because large 
discrepancies, especially in the lower part of the flow, already existed in the predicted 
and actual velocity profiles for the uniform-porosity situations (figure 7a,  b). The 
actual variations of K are generally similar in distribution to those for the single- 
gauze cases (figure 5a, b). Qualitative agreement is considered fair for the A* = 0.4 
gauzes (figure 10a). 

Figure 11 shows both the predicted and actual distribution of K required for a pair 
of A* = 0.6 gauzes separated by z, /L = 0.083 to adjust the shear parameter to 1.0. 
In this case velocities in the upper and lower parts of the flow need to be reduced (see 
figure 7 b) in order to achieve this objective. In a similar situation in which a pair of 
A* = 0.95 gauzes were placed x,/L = 0.042 apart (the velocity profile is shown in 
figure 12), by changing the resistance coefficient of the upstream gauze in a similar 
manner (also shown in figure l l ) ,  a case of constant-shear flow with A = 1.5 and 
turbulence intensities around 0.2 % to 0.4 YO was produced as shown in figure 12. 

The lower limit on the turbulence intensity attainable by the use of a damping 
gauze is determined by the fineness and uniformity of the gauze and is unrelated to 
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the porosity. Therefore, by using a finer mesh gauze with the same physical 
characteristics and porosity, a shear flow with the same strength but with lower 
turbulence level could be produced. 

By using this technique of double-curved gauzes, a few cases of strong constant- 
shear flows ( A  = 1.5 to 1.6) with low turbulence intensities have been successfully 
produced in the laboratory for studies reported by Woo, Cermak & Peterka (1989). 
The streamlines are essentially parallel at the test section with the constant shear 
extending to the lower velocity end without evidence of separation. The flow 
characteristics are very stable and do not change significantly with the variation of 
flow speed in the test section. 

5. Concluding remarks 
An effective and practical method of generating strong constant-shear flow with a 

low turbulence level has been deve1oped.A pair of closely spaced curved gauzes with 
the upstream gauze of varying porosity and the downstream gauze of uniform 
porosity was used. The required distribution of porosity for the upstream gauze was 
obtained by spraying with acrylic-resin spray. Adjustments to the downstream flow 
can be made quite easily by selective spraying of the first gauze. The significant 
characteristics of the shear-flow generator described herein are the strength and 
linearity of the shear flow and the low level of turbulence that can be achieved in the 
wind-tunnel test section. These are attributed to the design feature that any local 
abrupt variation of flow conditions generated from the non-uniform-porosity gauze 
is effectively attenuated by the downwind gauze. Instead of using the single gauze 
shapes in a double-gauze situation, in principle, one could modify the gauze shape 
first and then carry out the necessary velocity profile adjustments by changing the 
porosity of the first gauze. But, since changing of porosity is a relatively simple task, 
discrepancies in the gauze shape are not critical The theory and technique presented 
in this paper can be generalized to yield other desirable velocity distributions in the 
laboratory. 

The concept of double-curved gauzes for constant-shear-flow generation was 
formed and tested while conducting a study sponsored by the Office of Naval 
Research under contract N68305-78-C-005. Special thanks are due to Dr B. Lindberg 
who gave valuable assistance in obtaining the numerical results presented in 54.3. 
Suggestions and comments of the referees which led to some extensions and revisions 
of this work are gratefully acknowledged. 
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